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Background:   
One of the first areas of practical application for high temperature superconductor 

devices is passive microwave circuits.  Future DOD systems such as AMRFS and 
CRYORADAR depend on extremely sharp filter and resonator functions. However, 
nonlinear effects and intermodulation distortion (IMD) can defeat the advantages gained 
by going to HTS components. In order to maximize device performance, much effort has 
been expended in learning how to fabricate HTS thin film materials with very low 
surface resistance. In addition to low microwave loss, however, HTS materials can 
exhibit detrimental nonlinear behavior at microwave frequencies. Since the origins of 
nonlinearity in HTS devices are not well understood, it is not immediately obvious if the 
same film growth conditions that lead to low surface resistance will also produce low 
nonlinearity.    

 
Objectives: 
• Exploring methods to lower nonlinear effects in YBCO multilayers and thick films. 

Thicker films grown by multi-target PLD techniques and YBCO/CeO2 multilayers 
are expected to lower intermodulation distortion (IMD), based upon recent theoretical 
calculations. 

• Measurements of intermodulation distortion (IMD) as a function of temperature and 
power of YBCO thin films and YBCO/CeO2 multilayers by atomic-layer-controlled 
growth in order to understand the loss mechanisms and the nonlinear mechanisms. 

• Characterization by four-circle x-ray diffraction, AFM, STM, resistivity vs. 
temperature, Jc vs. temperature and magnetic field. 

• This study will point to the direction where we should go to improve the microwave 
properties and determine what kind of defects and disorder affect on the surface 
resistance and nonlinearity, in order to develop films and devices optimized for both 
low surface resistance and low nonlinearlity.  

 
Activities 

We have studied the nonlinear microwave response of epitaxial HTS thin films 
and multilayers in collaboration with Dr. Dan Oates at MIT Lincoln Lab. In order to 
make highest quality control, YBa2Cu3O7-d epitaxial films were fabricated on single-
surface-terminated (001) LaAlO3 and (001) (LaAlO3) 0.3(Sr2AlTaO6) 0.35 (LSAT) 
substrates by atomic layer controlled pulsed laser deposition.  We explored the effects of 
various deposition parameters which include deposition temperatures, film thicknesses 
and substrate types and miscut angles.  Films were characterized by four-circle x-ray 
diffraction, AFM, STM, resistivity vs. temperature, Jc vs. temperature and magnetic field. 
Finally, films were patterned and characterized for their nonlinear microwave properties, 
and compared with results from other deposition techniques by Dan Oates at MIT 
Lincoln Laboratory. 

 
Accomplishments/New Findings 
 
Growth and IMD of YBCO/CeO2 Multilayers  

In order to overcome the degradation of the crystalline quality of YBCO and 
enhance the flux pinning we have grown epitaxial YBCO/CeO2 multilayers stacks on 2 



 3

degree miscut (001) single crystal LSAT substrates by multi-target PLD at different 
substrate temperatures. Recently, it has been reported that multilayer films maintain high 
Jc values even in the case of thicknesses for which a single-layer film would show 
significant degradation. Figure 1 show the schematic of the multilayer structure. The 
multilayer structures have substantially higher Jc than single layer YBCO thin films with 
the same thickness. The Jc of the single layer YBCO with the same thickness is only 
0.94A/cm2. Furthermore, the multilayer films grown at lower substrate temperature (780 
C) has much higher Jc (4.1 MA/cm2) than multilayer films grown at high substrate 
temperature (825 C) (see Figure 10).   

 The results of the first measurements of a YBCO/CeO2 multilayer grown by PLD 
with in situ high pressure RHEED are shown in Figure 2, which compare a single-layer 
film of 400-nm thickness with a four-layer film with each YBCO layer 160-nm thick 
interspersed with CeO2 buffer layers 40-nm thick, giving an aggregate thickness of 640 
nm of YBCO. The improvement is dramatic. YBCO/interlayer multilayers have been 
expected on theoretical grounds to show improvements in IMD and in power handling. If 
verified, these results represent a significant improvement in IMD reduction and power 
handling increase. 

Thus, the multilayer films may be a method to also provide high-power 
capabilities to YBCO microwave devices. The outlook, however, is good for two reasons: 
first, the thicker films reduce the current density, and, second, it is expected that the 
thinner layers will enhance the pinning and thereby improve losses at high power levels 
because flux penetration and flux motion are sources of loss. 
 

 
 

Thickness dependence of IMD of YBCO thick films 
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Figure 1 (a) Schematic description of YBCO single layer and YBCO/CeO2 multilayer on 
(001) LSAT substrates, (b) Third-order intermodulation distortion at 40 K for the single-
layer film and the four-layer YBCO/CeO2 multilayer film. The frequency is 1.5 GHz. 
The IMD is lower for the four-layer film over most of the power range by about 30 
dB. At high power the single-layer film is saturated and the IMD is no longer a 
meaningful quantity 
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We have also studied the thickness dependence of IMD for single layer YBCO 
thick films. The films grown by multi-YBCO target PLD to improve the crystalline 
quality of the films. The films were patterned using standard photolithography and wet 
etching. After patterning, the etched striplines were assembled with YBCO ground planes 
to form stripline resonators. The properties of the patterned line dominate the 
performance of the resonator because the current density is approximately a factor 100 
higher in the line than in the ground plane. 1200 nm thick single layer films shows the 
lowest IMD as shown in Figure 2 and this agrees well with the local theory of Dahm and 
Scalapino and the nonlocal theory of Agassi. 
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Figure 2. Normalized IMD of single layer YBCO thick films  
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